圖3.ADXL356頻率響應(yīng)
帶寬與平坦度的關(guān)系
在利用單極點低通濾波器(例如等式4所用)建立頻率響應(yīng)的信號鏈中,其帶寬規(guī)格常常說明了其輸出信號提供輸入信號50%功率時的頻率。對于更復(fù)雜的響應(yīng),例如等式5和等式3中的三階模型,帶寬規(guī)格常常帶有相應(yīng)的平坦度規(guī)格。平坦度特性描述比率因子在頻率范圍(帶寬)內(nèi)的變化。利用圖3和圖5中的ADXL356仿真,1000 Hz時的平坦度約為17%,2000 Hz時的平坦度約為40%。
雖然許多應(yīng)用由于平坦度(精度)要求而需要限制可以使用的帶寬,但對有些應(yīng)用來說,這可能不是問題。例如,某些應(yīng)用可能更注重跟蹤隨時間的相對變化,而不是絕對精度。另一個例子是利用數(shù)字后處理技術(shù)來消除用戶最關(guān)心的頻率范圍上的紋波。對于此類情況,在給定頻率范圍時,響應(yīng)的可重復(fù)性和穩(wěn)定性常常比響應(yīng)的平坦度更重要。
測量范圍
MEMS加速度計的測量范圍指標(biāo)表示傳感器的輸出信號可以跟蹤的最大線性加速度。在超出額定測量范圍的線性加速度水平,傳感器的輸出信號會飽和。這種情況會引起嚴(yán)重失真,導(dǎo)致難以(甚至無法)從測量結(jié)果提取有用信息。因此,必須確保MEMS加速度計能夠支持峰值加速度水平(參見圖2中的AMAX)。
注意,測量范圍與頻率有一定的關(guān)系,因為傳感器的機(jī)械響應(yīng)會引入某種響應(yīng)增益,增益響應(yīng)的峰值出現(xiàn)在諧振頻率時。對于ADXL356的仿真響應(yīng)(參見圖3),增益峰值約為4倍,故測量范圍從±40 g降至±10 g。等式6提供了一種分析方法來預(yù)測此值,它以等式5為出發(fā)點:
比例因子的大幅變化和測量范圍的降低,是大多數(shù)CBM系統(tǒng)希望將其遭受的最大振動頻率限制在遠(yuǎn)低于傳感器諧振頻率水平的兩個原因。
分辨率
儀器分辨率可定義為環(huán)境中引起儀器示數(shù)發(fā)生可檢測變化的最小值?!?在振動檢測節(jié)點中,加速度測量的噪聲會直接影響其檢測振動變化的能力(即”分辨率“)。因此,對于那些正在考慮利用MEMS加速度計檢測其機(jī)器平臺上微小振動變化的人來說,噪聲行為是一個重要考慮因素。等式7提供了一個用于量化MEMS加速度計噪聲對其分辨微小振動變化能力的影響的簡單關(guān)系式。在該模型中,傳感器的輸出信號(yM)等于其噪聲(aN)與其經(jīng)受的振動(aV)之和。因為噪聲(aN)與振動(aV)沒有相關(guān)性,所以傳感器輸出信號的幅度(|yM|)等于噪聲幅度(|aN|)與振動幅度(|aV|)的和方根(RSS)。
那么,需要何種振動水平才能克服測量中的噪聲負(fù)擔(dān),在傳感器輸出信號中產(chǎn)生可觀測的響應(yīng)?根據(jù)噪聲水平量化振動水平有助于以分析方式探究這個問題。等式8通過比率(KVN)確定了這一關(guān)系,然后根據(jù)該比率導(dǎo)出了一個預(yù)測傳感器輸出變化水平的關(guān)系:
表1提供了此關(guān)系的一些數(shù)值例子,以幫助說明傳感器輸出測量結(jié)果相對于振動與噪聲幅度之比(KVN)的增加。為簡明起見,本文剩余部分假設(shè)傳感器測量的總噪聲決定其分辨率。從表1可知,這對應(yīng)于KVN為1的情況,即振動幅度等于噪聲幅度。在這種情況下,傳感器的輸出幅度相對于零振動時的輸出幅度會增加42%。注意,為了確定該情況下分辨率的相關(guān)定義,每種應(yīng)用可能需要考慮系統(tǒng)中可觀測到何種水平的增加。
預(yù)測傳感器噪聲
圖4顯示了一個采用MEMS加速度計的振動檢測節(jié)點的簡化信號鏈。大多數(shù)情況下,低通濾波器會提供某種抗混疊支持,而數(shù)字處理會提供更明確的頻率響應(yīng)邊界。一般而言,這些數(shù)字濾波器會努力保護(hù)代表實際振動的信號內(nèi)容,同時將帶外噪聲的影響降至最低。因此,當(dāng)估計噪聲帶寬時,數(shù)字處理是系統(tǒng)中要考慮的影響最大的部分。此類處理可采用時域技術(shù),例如帶通濾波器,或采用頻譜技術(shù),例如快速傅里葉變換(FFT)。
