但對于緊湊的便攜式和手持設備,問題要復雜得多,因為天線的周邊環(huán)境一直在變化。用戶在使用時可能朝不同的方向或靠近身體的不同部位(手腕、頭部或軀干)握持產(chǎn)品,或將產(chǎn)品放在其他物體的附近。因此,天線處于次優(yōu)環(huán)境中,在此環(huán)境中,天線的有效阻抗和共振頻率會發(fā)生變化并導致性能下降。
當天線的共振頻率發(fā)生偏移時,其呈現(xiàn)給無線電前端剩余部分的阻抗也會偏離初始值,造成阻抗失配。阻抗失配會產(chǎn)生三種效應。更多的能量從天線端子反射回來,而不是通過這些端子;由于負載牽引的原因,來自功率放大器 (PA) 的輸出功率下降;以及天線的輻射效率由于容性負載而降低。
過去幾十年里,天線面臨的這一處境導致射頻鏈路預算不斷下降,從而影響了產(chǎn)品的性能。由于網(wǎng)絡和系統(tǒng)級性能的提升,這一性能降級沒有引起用戶的注意。更多的蜂窩基站、蜂窩基站天線波束形成的使用以及改進的誤差校正技術,在很大程度上對其進行了補償。由于系統(tǒng)級需求和用戶需求不斷提高,尤其對于新興的 5G 標準,這類補償可能已經(jīng)“入不敷出”了。
與此情形相關的損耗模式有三種:吸收損耗、阻抗失配損耗和天線輻射效率損耗。吸收損耗可能高達 8 到 10 dB,并且目前為止我們對此無能為力。阻抗失配損耗約為 1 到 2 dB,而天線輻射效率損耗約為 2 到 3 dB??赏ㄟ^兩種方法來彌補阻抗失配和輻射效率損耗:更改天線的匹配電路和更改天線的諧振。
無線設備供應商在其最新一代的設備中已經(jīng)解決了該問題。動態(tài)調諧可以補償導致天線共振頻率發(fā)生偏移的頭部和手部效應。這是通過使用閉環(huán)調諧周期減少天線與功率放大器 (PA) 之間的失配以優(yōu)化功率傳輸來實現(xiàn)的(圖 7)。
圖 7:閉環(huán)調諧用于動態(tài)修改阻抗匹配網(wǎng)絡以實現(xiàn)最優(yōu)性能及減少損耗。
在閉環(huán)調諧中,將會實時檢測不可避免的反射系數(shù)變化。方法是通過定向耦合器同時監(jiān)測天線端子上的正向功率和反射功率的幅度和相位(參見“微型定向耦合器可滿足緊湊型射頻應用的需求”)。然后,系統(tǒng)將合成一個用于調整位于天線饋電點的匹配網(wǎng)絡的復數(shù)共軛,以增強前端與天線之間的射頻功率傳輸。這可以將損耗減少多達 1 到 3 dB。
這種閉環(huán)調諧方法盡管很有用,但也存在幾點不足。測量反射系數(shù)的幅度和相位,然后確定共軛匹配,這需要大量的計算周期和時間,或者需要使用查詢表。查詢表的速度較快,但精度較低。為實施復雜的匹配,需要采用復雜的匹配電路。使用此方法實現(xiàn)的性能提升通常為 1 到 3 dB。
閉環(huán)調諧的替代方法是孔調諧,該方法通常與阻抗匹配搭配使用。這種情況下,將以電氣方法更改天線尺寸(調諧狀態(tài)),將其諧振恢復到最大功率傳輸點,而不是調整匹配網(wǎng)絡以適應天線阻抗變化(圖 8)。這需要大量小間距的調諧狀態(tài)。
圖 8.經(jīng)過孔調諧的天線會動態(tài)調整天線的諧振長度以最大限度減少損耗
這種情況下,與閉環(huán)調諧一樣,將在天線的饋電端子處測量反射系數(shù)。接著,使用其中的一種方法執(zhí)行此測量,確定最佳的新調諧狀態(tài)。其中三種方法為標量方法,只需使用簡單的定向耦合器監(jiān)測天線端子處的反射功率幅度,然后應用不同的計算方法(被稱為平方擬合、閾值調整或凹點檢測)。
第四種方法基于矢量,并使用反射系數(shù)的幅度和相位來確定天線結構的 S 參數(shù)矩陣解,然后確定恢復天線的共振頻率所需的調諧器設置。通??蓽p少 2 到 4 dB 的損耗。與阻抗匹配結合使用,總體改進范圍為 3 到 7 dB。
對設計成敗至關重要的建模和仿真